Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Virus Res ; 324: 199028, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36572153

RESUMEN

Influenza A viruses are common pathogens with high prevalence worldwide and potential for pandemic spread. While influenza A infections typically elicit robust cellular innate immune responses, the non-structural protein 1 (NS1) antagonizes host anti-viral responses and is critical for efficient virus replication and virulence. The avian influenza virus (AIV) H7N9 initially emerged in China in 2013 and has since crossed the avian-human barrier, causing severe disease in humans. To investigate the influence of the H7N9 NS gene (NS079) on viral replication and innate immune response, we generated several recombinant AIVs bearing various NS079 segments on the backbone of H6N1 (strain 0702). Intriguingly, the recombinant virus bearing the heterologous NS079 gene was highly attenuated compared with virus carrying the homologous NS gene (NS0702). Furthermore, we generated a NS079-0702R virus that expresses a chimeric NS gene in which part of the NS079 effector domain was replaced with the sequence from NS0702. The NS079-0702R virus exhibited significantly enhanced viral yield, approximately 100-fold more than virus bearing NS079. The high infection rate of NS079-0702R virus was reflected by strong induction of IFN and Mx expression in human A549 cells. Intriguingly, our in vitro comparative analysis suggested that the increased NS079-0702R infection capacity was independent of the ability of NS1 to interact with cellular partners, such as PKR and CPSF30. Since partial substitution of the effector domain from NS0702 altered the coding sequence of NS2, we further generated another recombinant virus with NS2 derived from H7N9. Surprisingly, the virus with H7N9-derived NS2 exhibited growth characteristics similar to NS079. Our data demonstrate that swapping NS2 components changes infection efficiency, suggesting a key role for NS2 as a determinant of viral compatibility upon reassortment. These findings warrant further investigation into the precise mechanisms by which NS2 contributes to viral replication and host immunity.1.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Aves , Línea Celular , Subtipo H7N9 del Virus de la Influenza A/genética
2.
Front Microbiol ; 11: 280, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32226416

RESUMEN

Avian influenza virus (AIV) can cause severe diseases in poultry worldwide. H6N1 AIV was the dominant enzootic subtype in 1985 in the chicken farms of Taiwan until the initial outbreak of a low pathogenic avian influenza (LPAI) H5N2 virus in 2003; thereafter, this and other LPAIs have been sporadically detected. In 2015, the outbreak of three novel H5Nx viruses of highly pathogenic avian influenza (HPAI) emerged and devastated Taiwanese chicken and waterfowl industries. The mechanism of variation in pathogenicity among these viruses is unclear; but, in light of the many biological functions of viral non-structural protein 1 (NS1), including interferon (IFN) antagonist and host range determinant, we hypothesized that NS genetic diversity contributes to AIV pathogenesis. To determine the impact of NS1 variants on viral infection dynamics, we established a reverse genetics system with the genetic backbone of the enzootic Taiwanese H6N1 for generation of reassortant AIVs carrying exogenous NS segments of three different Taiwanese H5N2 strains. We observed distinct cellular distributions of NS1 among the reassortant viruses. Moreover, exchange of the NS segment significantly influenced growth kinetics and induction of cytokines [IFN-α, IFN-ß, and tumor necrosis factor alpha (TNF-α)] in an NS1- and host-specific manner. The impact of NS1 variants on viral replication appears related to their synergic effects on viral RNA-dependent RNA polymerase activity and IFN response. With these approaches, we revealed that NS1 is a key factor responsible for the diverse characteristics of AIVs in Taiwan.

3.
Pathogens ; 8(4)2019 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-31771230

RESUMEN

Chicken infectious anemia (CIA) is a poultry disease that causes huge economic losses in the poultry industry worldwide. Commercially available CIA vaccines are derived from wild-type chicken anemia viruses (CAVs) by serial passage in cells or chicken embryos. However, these vaccinal viruses are not completely attenuated; therefore, they can be transmitted vertically and horizontally, and may induce clinical symptoms in young birds. In this study, we sought to eliminate these issues by developing a subunit vaccine exploiting the CAV structural proteins, engineering recombinant baculovirus-infected Spodoptera frugiperda (Sf9) cells that contained both the viral protein 1 (VP1) and VP2 of CAV. Moreover, we produced single-chain chicken interleukin-12 (chIL-12) in the same system, to serve as an adjuvant. The recombinant VP1 was recognized by chicken anti-CAV polyclonal antibodies in Western blotting and immunofluorescence assays, and the bioactivity of the recombinant chIL-12 was confirmed by stimulating interferon-γ (IFN-γ) secretion in chicken splenocytes. Furthermore, the ability of the recombinant VP1 to generate self-assembling virus-like particles (VLPs) was confirmed by transmission electron microscopy. Specific pathogen-free (SPF) chickens inoculated with VLPs and co-administered the recombinant chIL-12 induced high CAV-specific antibodies and cell-mediated immunity. Taken together, the VLPs produced by the baculovirus expression system have the potential to be a safe and effective CIA vaccine. Finally, we demonstrated the utility of recombinant chIL-12 as an adjuvant for poultry vaccine development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...